Ela the Optimal Perturbation Bounds for the Weighted Moore-penrose Inverse

نویسندگان

  • WEI-WEI XU
  • WEN LI
  • Wei-Wei Xu
  • Li-Xia Cai
  • Wen Li
چکیده

In this paper, we obtain optimal perturbation bounds of the weighted Moore-Penrose inverse under the weighted unitary invariant norm, the weighted Q-norm and the weighted F -norm, and thereby extend some recent results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The optimal perturbation bounds for the weighted Moore-Penrose inverse

In this paper, we obtain optimal perturbation bounds of the weighted Moore-Penrose inverse under the weighted unitary invariant norm, the weighted Q-norm and the weighted F -norm, and thereby extend some recent results.

متن کامل

Ela Reverse Order Law for the Moore-penrose Inverse in C∗-algebras∗

In this paper, several equivalent conditions related to the reverse order law for the Moore-Penrose inverse in C-algebras are studied. Some well-known results are extended to more general settings. Then this result is applied to obtain the reverse order rule for the weighted Moore-Penrose inverse in C-algebras.

متن کامل

On level-2 condition number for the weighted Moore-Penrose inverse

In this paper, we present characterizations for the level-2 condition number of the weighted Moore–Penrose inverse, i.e., condMN (A) ≤ cond [2] MN (A) ≤ condMN (A)+ 1, where condMN (A) is the condition number of the weighted Moore–Penrose inverse of a rectangular matrix and cond [2] MN (A) is the level-2 condition number of this problem. This paper extends the result by Cucker, Diao and Wei [F....

متن کامل

An Efficient Schulz-type Method to Compute the Moore-Penrose Inverse

A new Schulz-type method to compute the Moore-Penrose inverse of a matrix is proposed. Every iteration of the method involves four matrix multiplications. It is proved that this method converge with fourth-order. A wide set of numerical comparisons shows that the average number of matrix multiplications and the average CPU time of our method are considerably less than those of other methods.

متن کامل

Ela New Representations for the Moore-penrose Inverse

In this paper, some new representations of the Moore-Penrose inverse of a complex m × n matrix of rank r in terms of (s × t)-constrained submatrices with m ≥ s ≥ r, n ≥ t ≥ r are presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011